The mechanics of markets: How to accurately monitor and control systemic risk

Ann Arbor, October 22, 2015

J. Doyne Farmer

Institute for New Economic Thinking at the Oxford Martin School

Mathematical Institute, University of Oxford

External professor, Santa Fe Institute

What I won't talk about

- Agent-based model of housing market in collaboration with the Bank of England
 - Tang, Pugh, Hinterschweiger, Galbiati, Uluc, Low Farmer (2015?)
- The Intrafirm Complexity of Systemically Important Financial Institutions
 - Lumsdaine, Rockmore, Foti, Leibon, Farmer (2015)
- Why agent-based modeling are an essential tool for understanding systemic risk

Mandate of the OFR (Dodd-Frank)

- GENERAL DUTIES.—The Research and Analysis Center, on behalf of the Council, shall develop and maintain independent analytical capabilities and computing resources—
- A. to develop and maintain metrics and reporting systems for risks to the financial stability of the United States;
- B. to monitor, investigate, and report on changes in systemwide risk levels and patterns to the Council and Congress;
- C. to conduct, coordinate, and sponsor research to support and improve regulation of financial entities and markets;

How to achieve this? How well can it be done?

Systemic risk

- Systemic risk in financial markets occurs when activities that are beneficial to an agent in isolation cause unintended consequences due to collective interactions.
 - microprudential vs. macroprudential regulation
- Two channels of contagion in financial markets:
 - networks of counterparty exposures (lending)
 - overlapping portfolios (common assets)

Key factors

- Dynamic effects
 - changing positions (e.g. deleveraging to reduce risk) can turn a market correction into a crisis
- Network effects
 - need to take into account number of systemically risky institutions a given institution connected to
 - connections can be via loans or common assets
- Ecological effects
 - -shifts in the composition of investor strategies

Dynamic effects

- E.g. leverage cycles (Minsky, Geanakoplos, 2003)
 - now a large literature
- Agent-based model of leveraged value investors
 - Thurner, Farmer, Geanakoplos (2012); Poledna, Thurner,
 Farmer, Geanakoplos (2014)
 - leverage creates clustered volatility and fat tails in returns similar to those actually observed
 - risk control forces selling into falling markets
 - Basel makes crises more frequent at high leverage

Cause of Great Moderation + crisis?

ABM of Basel leverage cycle

- Banks use leverage targeting, which is inherently destabilizing (Adrian and Shin, 2008)
- Simple model
 - Aymanns and Farmer (2015), Aymanns, Caccioli, Farmer and Tan (2015)
 - Investors: bank and fundamentalist; one risky asset
 - Bank follows leverage targets, e.g. from Basel II
 - Moving average of historical vol to compute risk

Agent-based model of interacting banks

Optimal policy depends on market power of banking sector

- Low market power:
 Basel optimal
- High market power: constant leverage
- Microprudential vs. macroprudential regulation

policy recommendation on leverage

- Know where threshold is!
- Leave a large margin of error
- Best policy depends on size of banking sector
 - when banking sector larger, leverage must go down
 - limits must change sufficiently slowly (compromise between microprudential and macroprudential risk)
 - need carefully designed countercyclical buffers

Network effects

- For counterparty exposure networks Debt Rank is the right way to measure systemic risk
 - Battiston et al, (2012);
 - Uses same principle as Page Rank (Google)
 - Requires knowledge of network of debt exposures
- Can construct a systemic risk tax that (in an ABM simulation) costlessly eliminates systemic risk.
 - Poledna and Thurner, (2015)
- Developing an analog for overlapping portfolios
 - Caccioli, Shrestha, Moore, Farmer (2014);

Networks + Dynamics

- Two or more channels of contagion imply multiplex network (multiple overlapping networks)
 - risk greater than the sum of the individual risks
 - Caccioli, Farmer, Foti and Rockmore (2015)
- Need to combine dynamics and network properties
 - Aymanns, Caccioli, Farmer, Kleinnijenhuis, Poledna, Thurner (?)
 - Will provide accurate early warning of systemic risk
 - Requires knowledge of positions of SIFIs

Charter of the OFR (Dodd-Frank)

 The Office shall collect, on a schedule determined by the Director, in consultation with the Council, financial transaction data and position data from financial companies.

Summary

- Knowledge of positions would give vastly better understanding of systemic risk
 - early warning, policy advice to reduce risk, ...
- Approach needed is very different than usual
 - representative agents, utility maximization, equilibrium, motivations, not needed
 - need to understand dynamics and stability of the financial network
 - knowing positions of SIFIs permits the luxury of using a mechanical approach to understanding risk

Leverage amplifies noise

 Doesn't just increase probability of bankruptcy, it alters prices,

spreads contagion

